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Research Accomplishments Supported in Part by this Grant

In an initial study, we examined the He + observations from the Retarding Ion Mass

Spectrometer on Dynamics Explorer 1 (DE1/RIMS), for more than 120 transits of the

plasmasphere in the fall of 1981 [Newberry et al., 1989]. We determined the He + to H + ratio as

it varied spatially over portions of the DE 1 orbit, and its variation with solar and magnetic

activities and with local time, focusing specifically on the inner plasmasphere. These variations

were compared along the L = 2 field line with calculations made by the Field Line

Interhemispheric Plasma (FLIP) code [Richards and Torr, 1988; Torr et al., 1990; Richards et

al., 1994a, b]. We found that ion temperatures computed by FLIP were consistently lower than

those observed. When a heat source was added, sufficient to bring the temperatures into

agreement, the densities were also brought into good agreement. We suggested photoelectron

trapping as a likely mechanism for providing energy to plasmaspheric ions from a readily available

source. Recent calculations by Khazanov et al. [1992, 1994a] support the idea of more

photoelectron energy being made available to the plasmasphere than previously calculated due to

trapping through pitch angle scattering.

A more extensive statistical study ofN + behavior using the DE1/RIMS data [Craven, 1993;

Craven et al., 1995a, 1996] suggests that the dynamics of N + are similar in most essential

respects to the dynamics of O +. However, the RIMS data indicate that the ratio of N + to O +

densities decreases for increasing solar activity. Using FLIP we have found this appears to be

related to a greater increase in O + density than in N + density which occurs at the F2 peak with

increasing solar activity. Whether this has a dynamic origin or is rooted in temperature

dependencies of source and loss processes is still to be determined. In general, the model shows

that the N + to O + density ratio tends to increase with altitude above about 1000 km for all

geophysical conditions, typically ranging from 0. I to about 1.0, and decreases with increasing ion

temperature. This increase with altitude is supported by R/MS observations. The ratio varies

considerably below 1000 km altitude, depending on the solar activity, the geomagnetic activity,

the local time, season, and other variables. One of the results of this study is that there appears to

be much more N + in the magnetosphere, particularly above the topside ionosphere, than has

generally been appreciated. Previous observations with insufficient mass resolution to distinguish

N + from O + have typically attributed what was observed in this mass range to O +. This

difference could be significant for high precision resonant type processes (e.g. radiative emissions)

or in quantitative comparisons of observations with detailed physical models which include

realistic ion chemistry.

In a recently submitted paper [Craven et al., 1995b], we examine the He + to IT density ratio

for all the available data from 1981 through 1984 from the Retarding Ion Mass Spectrometer on

the Dynamics Explorer 1. We find that there are two basic characteristics of the ratio of He + to IT

densities in the plasmasphere. One is that the ratio decreases with radial distance r in the

plasmasphere, and the other is the strong dependence of the density ratio on solar activity. The

overall mean adjusted ratio for low activity is 0. ! and for high solar activity is 0.25. Previous



studies,althoughwith higherenergyions, havealso seena dependenceof the densityratio on
solar activity [Young et aL, 1982]. The model of the plasmasphere used by Newberry et al.

[1989] shows a solar activity effect that is dominant over geomagnetic effects, but in either case

the ratio increases with increasing activity. We are able to detrend the data in order to remove the

decrease with r and with declining activity. The functions used for the detrending provide a basis

for a first order model for the plasmaspheric He" to H* density ratio. Farrugia et aL [1989] using

GEOS/ICE data, showed that the equatorial He t to t-F ratio decreased by a factor of about 2 from

2 RE to 6 RE, a rate somewhat slower than that found by Craven et aL [1996], but still within the

spread of the data. The behavior of the ratio in this study is qualitatively consistent with the
results from FLIP.

We have recently been studying an interesting phenomenon in the topside ionosphere which

relates to the thermal coupling of the ionosphere to the plasmasphere. A study of the Millstone

Hill incoherent scatter data taken during the 1960s and 1970s often revealed anomalous electron

temperature enhancements at night in the topside. We have performed a detailed statistical study

of the occurrence characteristics of these events and found that it is mostly a winter phenomenon,

occurring on 70% of the January nights, but rarely in summer. However, it also occurs, with

lower frequency, in all other months from September through May. The events typically occur

prior to midnight and last for 2-3 hours. There is little or no correlation with magnetic and solar

activity.

In the past, these temperature enhancements were attributed to density decreases in the

presence of a constant heat flux from conjugate photoelectrons [Evans, 1967; Sanatani and

Breig, 1981]. However, the occurrence of these events at equinox, when conjugate

photoelectron heating is non-existent, points to a more complex mechanism. Also, heating events

do occur when the electron density is increasing rather than decreasing. And in those cases where

the density decreases as the temperature rises, the subsequent temperature decrease usually occurs

as the density continues to decrease. On the other hand, if the apparent ionospheric heating is a

purely plasmaspheric phenomenon, totally independent of the conjugate photoelectron flux, it is

difficult to understand why it does not occur in summer, when the ambient ionospheric

temperatures are low and any heat source would be more noticeable. Results of this study have

been published in the Journal of Geophysical Research [Garner et aL, 1994]. Khazanov et al.

[1994b] have suggested that these heating events may be associated with the compression of

convecting flux tubes on the night side.

Another study has been directed toward the relation of plasma properties to the density

gradients forming the plasmapause. From a set of more than 150 plasmasphere transits made by

DE 1 in late 1981, a subset of RIMS observations from 47 of these was selected, based on a drop

in density exceeding an order of magnitude within a one half unit increase in L shell. It had been

found previously in examining temperature and density gradients that the maximum temperature

gradients tended to be co-located with the maximum (in magnitude) density gradients, suggesting

that steep density gradients are places where the energetics of plasmasphere models should be

tested. The study has followed a two pronged approach. First, the observations have been

analyzed to determine what happens to the plasma properties across these boundary layers; this



part is being concluded. Second,comparisonswere madewith FLIP model calculationsto
determinehowwell the modelis ableto treattheseconditions.

An exampleof thetransitionswhichoccurneartheplasmapauseis shownin Figure 1. This

figure, adapted from Comfort et al. [1996], shows the O + and He + concentrations averaged at

specific locations relative to the plasmapause, with the corresponding average H + temperatures

above. The 'L3' data point occurs at the beginning of the plasmapause density gradient, the 1,5

point denotes the bottom of the density gradient, and the L4 point in between can be taken to

represent the location of the plasmapause. The error bars indicate the scatter in the individual L

values of these locations in the data set. A feature of primary interest is the minimum in O +

concentration interior to the plasmapause and the large increase in concentration across this

boundary. The variation in average ion temperature at these points is sufficiently similar to

suggest a relationship. However, the temperature structure does not show the minimum at L2,

and the temperature is that of H +, which has been found to be generally in equilibrium with O +

[Comfort, 1995]. The behavior of the O + concentration is in stark contrast with that of He +,

which is virtually unchanged across the plasmapause. Among other characteristics found in this

study is a lack of strong correlation with magnetic activity, except for the location of the

plasmapause.

In comparing these observations with simulations, we have used the FLIP model to evaluate

plasma properties for several L-shells on selected days, and then compared these with DE 1/RIMS

observations. As in the He + study [Newberry et al., 1989], it was found that the observed ion

temperatures are consistently higher than the FLIP calculations. However, we found that a

photoelectron trapping factor similar to that found in the He + statistical study provides sufficient

energy to increase the calculated ion temperatures to those observed, for the inner L shells. When

this is done, it also increases the calculated He + and O + densities, resulting in good agreement

with the observed densities. For the outer L shells, the situation is more complicated. Increasing

the photoelectron trapping factor, even to 1.0, is insufficient to bring the computed temperatures

up to those observed; and the corresponding He + and O + densities are also somewhat low.

Where there is overlap with energetic ions from the ring current, the low energy part of which is

observed by the Energetic Ion Composition Spectrometer (EICS) on DE 1, Coulomb collisions

between heavy ring current ions and thermal H + and thermal electrons can also provide additional

heat to the thermal ions. This has been computed, as described by Kozyra et al. (1987) and

Chandler et al. (1988), and this heat source has been included in the FLIP model.

An example is shown in Figure 2. The top panel presents H + temperatures, with filled

circles showing DE1/RIMS observations. The open squares correspond to ion temperatures

calculated normally with FLIP, while the open diamonds represent the same calculation, but with

50% photoelectron trapping, as described by Newberry et al. [1989]. For the outer L-shells (L >

2.7), the crosses denote ion temperatures computed by including both the additional

photoelectron heating and the Coulomb collisional heating from ring current O +. The bottom

panel shows the corresponding densities for H +, He + and O +, with filled symbols representing the

observations and open symbols the calculated densities; the progression of open symbols

corresponds to the initial and final Ti, as described for the upper panel. For present purposes, the



importantpointsto notearethatthe introductionof the additionalheatingis generallyadequateto
raisetemperaturesto observedlevelsandwhenthis is done,the densitiescorrespondinglygive
goodagreementbetweenobservationsandcalculation. The exceptionoccursat L = 2.98, where

the density has dropped to a few hundred per cubic centimeter and the temperature has increased

to >__15,000 K; the calculated temperatures are far too low and the calculated He + and O +
densities are also low.

We have recently studied this case in more detail [Comfort et al., 1995a], examining the

nature of heating mechanisms required to produce these high ion temperatures (1-2 eV). We

found that heating the ions through the thermal electrons, as done by photoelectrons, could not

transfer sufficient energy to produce the observed ion temperatures, due to decreasing collisioaal

coupling between thermal ions and electrons with increasing temperatures. However, the

observed temperature could be readily achieved if the heating mechanism operated directly on the

ions (e.g. Coulomb collisions between thermal ions and ring current heavy ions [Kozyra et al.,

1987, Fok et al., 1993] or wave-particle interactions [Khazanov, 1995]). But the resulting

simulations also produced some effects which are not observed. In particular, ion temperatures in

the topside ionosphere were up to 5000 K higher than observed, and heavy ion (O +)

concentrations at high altitudes were also much higher than observed. While these results are

extreme examples, similar problems have been found in other case studies, e.g. Horwitz et al.

[1990], Craven et al. [1995a]. We suggested that these inconsistencies between model results

and observations could be diminished if the thermal conductivity were not so large, so that less

thermal energy is transported to the topside ionosphere, where O + is the dominant ion.

To test this idea, in a subsequent study [Comfort et al., 1995b], we postulated a reduced

thermal conductivity coefficient in which only particles in the loss cone of a quasi-collisionless

plasma contribute to the thermal conduction. Other particles are assumed to magnetically mirror

before they reach the topside ionosphere and therefore not to remove thermal energy from the

plasmasphere. This concept was used to formulate a mathematically simple, but physically

limiting model for a modified thermal conductivity coefficient. When this modified coefficient was

employed in the FLIP model in a case study, the inconsistencies between simulation results and

observations were largely resolved. The high simulated ion temperatures were achieved with

significantly less heat input, and resulted in substantially lower ion temperatures in the topside

ionosphere, as seen in Figure 3a. The corresponding effect on densities and composition is shown

in Figure 3b. We suggested that this mechanism might be operative under the limited low density,

refilling conditions in which high ion temperatures are observed.

Among the significant lessons learned in these studies are two that bear directly on the

direction of future investigations in this area. First, composition cannot be viewed independently

of thermal structure. Even though other factors come into play, without accurate knowledge of

the energetics, composition will not be understood on a quantitative basis. Second, solar and

magnetic activity effects are real; but the causal relationship between activity and effects is

frequently quite complicated because several different processes appear to be operating in

different ways and on different time scales. Under these circumstances, large correlation

coefficients should not be expected and are not generally found.
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Figure 1. Average H + temperatures (upper panel) and He + and 0 + concentrations

(lower panel) at L-shells sp_:ified relative to plasmapause location for a self.:ted set of 44

steep plasmapausedensitygradients.
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